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Heat- and mass-transfer processes are investigated in the contact melting of solids 
with large specific loads and energy rates appropriate to conditions of thermal 
drilling. 

Many technological processes are based on contact melting of solids according to the 
scheme in Fig. I. In the working part of the heating device i, heat sources 2 are distributed. 
The temperature tH at the heating (working) surface ZH of the device is above the melting 
point tM of the solid mass 4 filling an infinite region ~ of three-dimensional space with 
moving sections of the boundary -- the melting surface IM and the boundaries forming here, the 
surface of the molten zone El. The heating device moves into the molten solid medium at 
some velocity V; the melt formed 3 is squeezed out from the gap between surfaces Z H and EM 
under the action of external load W (the weight force) applied to the system; the load is 
calculated per unit area of the middle of theworking-region cross section generatingthe 
thermal energy. 

Melting occurs in this way in contact fusion apparatus [i], which is widely used in in- 
dustry, and in the fusional drilling of rock and glaciers [2-4]; an analogous picture appears 
in arc welding (fusional welding) [5, 6] and in a whole series of other fields. Although it 
is widespread, this complex multiparameter process has been the subject of little theoretical 
study. The development of the corresponding problems of mathematical modeling is especially 
critical in solving the technical problems arising in the course of new developments. The 
latter relates directly to a new method of drilIing rocks and glaciers -- thermal drilling. 

Consider a steady process of contact melting. In this case, preliminary investigations 
[7] of the general equations of mass, momentum, and energy conservation of a molten layer 
using methods of similarity theory and dimensionality analysis allow the following dimension- 
less complexes characterizing the heat and mass transfer in the liquid and solid phases to be 
determined: 
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Each of the similarity complexes in Eq. (i) has a completely determined and obvious 
physical meaning, so that comparison of the orders of magnitude of these quantities for any 
specific class of processes allows their basic features to be elucidated and permits well- 
founded simplification of the general mathematical model. Thus, for example, for thermal 
drilling of rocks and glacier masses, relatively large specific loads W ~ i00 kN/m 2 are 
typical, as well as heat fluxes at the working surface and the melting surface qH, qM ~ 300 
kW/m~. As a result V ~ 10-4-10 -3 m/sec, and when I ~ 5.10 -2 m, Peclet numbers Pe, Pe L - i0- 
s K%, Kc, KM ~ i. At the same time, Kh, the ratio of the characteristic thickness of the 
molten layer to the characteristic dimension of the working part of the heating device (the 
but of the thermodrill) ~, is of the order of i0-~-i0-2; Kg, the ratio of the scale of the 
gravitational mass forces in the molten layer to the external load, is 10-3; the Reynolds 
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F ig .  1. Diagram of  the  c o n t a c t -  
m e l t i n g  p r o c e s s :  l )  h e a t i n g  de-  
v i c e ;  2) h e a t - g e n e r a t i n g  e l e m e n t ;  
3) m o l t e ~  l a y e r ;  4) m e l t i n g  mass .  

number Re ~ 10-7-10-4; the Brinkman number, determining the intensity of dissipative heating, 
is Br ~ i0-5-i0 -~. 

The smallness of the liquid-phase layer thickness h (h ~ Khl) allows the boundary-layer 
approximation to be used in the mathematical description of the heat- and mass-transfer pro- 
cesses occurring there. 

Consider the cases of axisymmetric and plane geometry of the contact-melting picture. As 
shown in Fig. i, systems of cylindrical (plane Cartesian) coordinates r, z and curvilinear 
coordinates s, ~ associated with the heating device are introduced. Then, in the region of 
smooth sections of the generatrix F N of the working surface, its dimensionless curvature is 
given by the complex K~ = 0(i) and, accurate to quantities of order O(K~, K• Kh, Kg, Re, Br), 
the mean (over the molten-layer thickness) dimensionless balance equations of mass, momentum, 
and energy conservation will take the form 

J 

R;' (R.'n,t' v (s, en) + K. enes dZ as ' 
0 

dS = O----~- n=l Oq n~o' 

0 
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Here 

(R, Z, S ) =  (r, z, s)/I; ~ = Uh, "~= ~ / ~ ;  P = p/W; 

/i. ~ _  tree - -  tM lqYH, 
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R = RH(S), Z = ZH(S) are normal equations of the curve PH, S2 ~ S~SI. 

Note that, in calculating the melting of a solid medium by a piecewise-smooth heating 
surface s Eq. (2) requires the addition of special matching conditions, which are valid in 
the vicinity of the node points of the genetratix FH where K~ + ~. 

It may be shown that the heat-flux density QH at E H is found, accurate to small terms 
of order O(K~Kh), where K~ = %H/%L, as a result of solving the individual problem of the 
temperature conditions o the heating device, when | = 0 is specified approximately at the 
working surface. In connection with this, the distribution of QH is regarded as known below. 

The expression for the heat-flux density QM at the melting surface E M is determined by 
a relation of Stefan-condition type 
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( dR. dZ u dH ) 
--- K~Q + PeLKM \ - - - ~  -6 Kh dS dS ' (4) 

in which Q = qSI/~S(EM -- t ) is the reduced heat-flux density arriving at the solid phase. 

The quantity Q is one of the basic characteristics of the contact-melting process, and 
its calculation is based on the analysis of the problem analogous to the classical problem of 
welding theory concerning the temperature field | (M) in the solid phase around the welding 
tank [8, 9] 

AOs--  Pe 8@slSZ : O, M E 04 (5) 

~) e s J ~ =  1; b) esl~, = % c) lira e s = o. 
M~oo 

Here | is the temperature distribution at the surface Z l of the molten region (Fig. i); 

| = (ts -- t~)/(tM-- t ). 

In Eq. (5), it is expedient to use the method of boundary integral equations [i0], which 
allows an integral equation of the first kind in Q to be obtained directly without the 
laborious procedure of constructing its general solution. In the general case, this equation 
has a fairly complex form and includes integral terms describing the influence of the boundary 
conditions (temperature field i) at the surface ~ on the heat-flux density Q reaching the 
solid phase from the melting surface IM. Special estimates show that, in the given range 
Pe ~ i0, the distribution of Q at EM is practically independent of the character of the heat 
transfer at El: the corresponding perturbations are localized in a small vicinity of the 
matching line of the surfaces ~ and E M of width O(Pe-1), and their integral contribution to 
the overall heat balance is of order Pe -2. As a result, there is no need to specify the dis- 
tribution of the temperature @~ at El; the integral equation for Q is significantly s,'~mmplified 
and takes the form 

J L z  J 
z' M 

where F M is the generatrix of the melting surface, and the core ~(M, Mo) is determined by the 
relations: a) in a Cartesian coordinate system in the plane 

(M, Mot = ~ I(o V ( ~  - ~o)~ + ( z -  ~ T  , (7) 

where Ko(x) is a zero-order modified Bessel function of the second kind; b) in the presence 
of axial symmetry in a cylindrical coordinate system 

o~ 

~(,~i, Mo) = V ( ~ -  Ro) ~ + ( Z -  Zo) ~, 

exp (-- Pe t/2) dt 
;/(~ t~)(t~- ~ 7 '  

[} (M, Mo) = F (R + Ro) 2 + (Z.-- Zo)'. 

(8) 

Note that, in thermal-drilling practice, thermodrilling equipment with annular bits in- 
tended for taking a sample (a core) of the molten rock is widely used. The symmetry axis Z 
does not intersect the generatrix F M of the melting surface in this case, and in Eqs. (6) and 
(8) the difference B -- ~ > D, the ratio of the core diameter d to the bit width Z. Then, when 
PeD >> i, a uniformly applicable asymptotic expansion may be constructed for the core in Eq. 
(8) [ii]; the principal term of this expansion differs from Eq. (7) by the factor ~/Ro, and 
the next term is of order O(Pe-ID-I). The result obtained significantly simplifies the 
calculation of contact-melting processes due to annular heating elements and illustrates the 
physically obvious equivalence of the formulation of the corresponding mathematical problems 
in plane Cartesian and cylindrical coordinate systems as PeD § ~. 

Equations (2), (4), and (6) may provide the basis for constructing closed mathematical 
models of contact-melting processes for large specific loads (Kh << i) and rates of melting 
(Pe >> i). 
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The quadratic polynomial approximations with respect to n of the temperature profiles 
and longitudinal velocity component of the melt flow in the gap between the working surface of 
the heating instrument and the melting surface are now specified, and the mean delivery tempera- 
ture ~(S) and longitudinal velocity U(S) of the liquid phase are introduced. Taking account 
of the obvious boundary conditions at l H (n = 0) and E M (n = i), and substituting the resulting 
expressions for | n) and U(S, n) into Eq. (2) with relative error 0(Kh), it is found that 

$I 

- -  - -  " ~ I - - R ,  ) dS. (9) 
U (S) = ]~H~-I-1 R'Y-{-1 P (S) = P1 Jr  ~ (l .]L ~)( /~  Jcl y+l 

(? + 1)HR~ ' .- H3RV. 
S 

It is assumed here that in the region of the ends of the working-surface generatrix (S = S~, 
S = $2) specified pressure values are maintained: P(Sz) = P~ and P(S2) = Pa. The second of 
these conditions allows the constant of integration R, in Eq. (9) to be found: 

S~ S 1 

~, H' ] l .} H3R~ ' 
S~ 

which, if R. 6[R,(S2), R,(S~)], may be interpreted as the coordinate of the branch point of the 
melt flow, where U = 0. 

Note that in the case where the heating instrument is a solid of revolution, and the axis 
Z (the axis of revolution) intersects the surface EH, the condition P(S2) = P= is meaningless:; 
in view of the axial symmetry assumed for the melting process, R,-~R~(S,)~-O, S,-~-S~, and it is 
expedient to set $2 = 0. 

Further, in a quadratic approximation in ~, the temperature profile in the melt layer is 

Q. = ( 7 o . -  106)/(2K~H), (lO) 

and energy equation (2) and Eq. (4) take the following form: 

d 
~ . . . .  pe L d f f -  [(R~+I _ R~+I) ~31 5 (7 + 1) R~ (@.-- 20) 

KhH 

I<l~PeL Kh dS dS + - - ~  J + K~Q = 2KhH 
(11) 

The first and second relations in Eq. (ii) are degenerate at the points of S where 
RH(S) = R,(S = S,) and dZH/dS = 0, respectively. It is natural to require that the deriva- 

tives dO/dS and dH/dS be bounded here; this gives the boundary conditions necessary for solving 
Eq. (ii). In addition, it is obvious that the axial load applied from the direction of the 
heating-instrument working surface to the melt layer is balanced by the internal-stress forces 
in the liquid phase, which, accurate to terms of order O(Kh) , are the pressure forces. Thus, 
taking account of Eqs. (3) and (9), it is not difficult to write the additional condition 

St 
6 ~ (I • pv+1~ D2-v 

c ~ " " "  - - " *  '""  dS+(Pz- -1)R~(S~)- - (P  2 -1 )R~($2)=0 .  (12) 
J M, 
$2 

The system of Eqs. (6)-(8)' (10)-(12) is closed and, if the distribution QH__(S) is speci- 
fied, allows characteristics of the contact-melting process such as Q(S), O~(S), O(S), H(S) , 
and Pe to be found, and then U(S) and P(S) are calculated from Eq. (9). 

The generatrix of the melting surface FM may be specified under the condition of smooth- 

hess of F H by the parametric equations 

R = RM(S) ~ RH (S) + KhH (S) dZ~/dS, 

Z = ZM(S ) ~ Z~ (S) -- KhH (S) dR./dS. 

Hence, in  t he  case  o f  s t a b i l i t y  of  t he  s o l u t i o n  Q(S) of  Eq. (6) w i t h  r e s p e c t  to  sma l l  p e r t u r -  
b a t i o n s  o f  t he  m e l t i n g  s u r f a c e ,  i t  i s  p o s s i b l e ,  in  t he  f i r s t  a p p r o x i m a t i o n ,  w i t h  an expec t ed  
error of order O(Kh), to replace the integration curve F M in the integral in Eq. (6) by F H and 
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Fig. 2. D i s t r i bu t i on  of hea t - f l ux  
density reaching the solid body from 
the melting surface, for the case of 
an annular heating instrument with 
Pe = 15. The form of Z M is conical 
(i), spherical (2), and parabolic (3). 
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Fig.  3. Dependence of  the  e f f i c i e n c y  ~ of  a p a r a b o l i c  annula r  
thermodrilling bit on the elongation parameter A in the fusional 
drilling of ice; K W = 1.4"10-a; K% = 4.1; K c = 0.5; Pe = 15 (1), 
30 (2), $5 (3), 60 (4); K M = 1.6 (solid curves), 4 (dashed curve). 

Fig. 4. Dependence of the efficiency ~ of a paraboloidal thermo- 
drill bit with a continuous face on the elongation parameter A in 
the fusional melting of rock: K W = 0.77-I0-2; K% = 1.06; K c = 1.1; 
Pe = 25 (i), 50 (2), 75 (3), I00 (4); K M = 0.16 (solid curves), 0.3 
(dashed curve). 

realize an iterative algorithm for the construction of the solution of Eqs. (6) and (i0)-(12). 
As a result, the problem of investigating and solving Eq. (6) takes on independent importance. 

In the practically important particular case when the genetratix of the melting surface 
F M is a parabola Z M = A(R M -- R,) 2 with an elongation parameter A > 0, the results of analyzing 
Eq. (5) [ii, 12] may be used, and the solution of Eq. (6) written in the form 

Peexp(--a=)/JV"naerfc(u), ? = 0 1  (13) 
Q= V l  q-aAZ M l ( a  2Ei(-a2), ? = 1 ! '  

where 

a = = Pe/(4A); 
&, 

erfc(x)= 2 S ; exp(--xu) V~ exp ( -  u 2) du, Ei (--  x) = u du. 

x 1 
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An algorithm for the ~umerical solution of Eq. (6) o~ the basis of the Kryiov--Bogolyubov 
method has been developed for the calculation of contact-melting processes wi~h heating-instru- 
ment working surfaces of arbitrary form. The results of calculating the distribution of Q 
for some types of F M are shown in Fig. 2. It is readily evident that the presence of node 
points on the generatrix of the working surface of the heating instrument F H will lead to an 
anomalous increase in heat-flux density Q in their vicinity at small Kh, to unreasonable heat- 
ing of the melt layer in the intermediate regions and, finally, to reduction in efficiency of 
the heating instrument. 

Within the framework of the given mathematical model, in view of Eq. ( 1 0 ) ,  specifying the 
heat-flux density QH on I~ is~equivalent to specifying the distribution of the temperature @ H . 
In p~rticular, the case of a heater with an isothermal working surface, which is often en- 
countered in thermal-drilling practice~ f~r example, may be studied in this way. !f in addi- 
tio~ the condition Q/(dRK/dS) = B = const is satisfied here, at least approximately, as for a 
bit of parabolic form-- see Eq, (13) -- then the s~lution of Eqs. (10)-(12) is written in the 
e~plicit form 

B8 _ 6 (1  + {) s ,  
(~t+ 1)[(1--P,)R2.(S~)--(1--P~)R~(S2)] [ (R~+. Do+,, ~,2_~( dR. ~3dS 

s, 

Q~ = Pe L B (1 -[- 0.35 Pe L E~o ,H)/{ ! - -  0,15 Pe L Kt, H), 

= 0,5 Pe L I(~/}HI( 1 - -  O. l 5 Pe~ I<~/t), (14)  

~ e r e  H = HdR./dS, [2.'= Q./(dR.IdS), B = Km--5 B K~/Pe L. 

E q u a t i o n  (14)  i s  s u i t a b l e  f o r  r o u g h  e n g i n e e r i n g  c a l c u l a t i o n s .  

To c o m p a r e  d i f f e r e n t  t h e r m o d r i l l i n g - e q u i p m e n t  h i t s  ( p e n e t r a t o r s ) ,  t h e  e f f i c i e n c y  ~ i s  
i n t r o d u c e d  a s  a m e a s u r e  o f  t h e  e f f e c t i v e n e s s  o f  t h e i r  f o r m  and c o n s t r u c t i o n .  I t  i s  d e f i n e d  
am t h e  r a t i o  o f  t h e  minimum t h e r m a l - e n e r g y  s u p p l y  r a t e  No n e c e s s a r y  f o r  m e l t i n g  t h e  r o c k  i n  
t h e  m i d d l e  c r o s s  s e c t i o n  o f  t h e  b i t  t o  t h e  power  gB t a k e n  f r o m  t h e  w o r k i n g  ~ u r f a c e :  

5, 
= = 

S. 

No = ~ [R~ (S~) -- ~. (S~)I(Kr + ~M) PeL. 

Calculations based on the mathematical model of contact melting outlined in Eqs. (6)- 
(12) with a fixed volume ~f a heating instrument with an isothermal working surface show 
that, other conditions being equal, ~ is closest to a maximum in parabolic heaters. 

The efficiency ~ is ~hown as a function of the elongation parameter A in Figs. 3 and 4 
for fusional drilling of glaciers and rocks by means of thermodrilling equipment with annular 
parabolic bits (with an annular face) and with bits in the form of paraboloids of revolution 
(continuous face). Analysis of these curves shows that at small A, heat losses on 
account of nonsteady heating of the liquid pha~e predominate; at large A, energy losses 
associated with hea~ scattering in the molten mass become m~re n~n~derable+ The balance of 
these two components depends on the rate of melting, and the maximum of ~ s shifted toward 
larger A with increase in Pc. 

NOTATION 

a, thermal diffusivity; c, specific heat; d, core diameter; g, acceleration due to 
gravity; h, thickness of molten layer; ~, characteristic dimension of heating device (width 
or diameter); L, latent heat of fusion; M, Mo, points of space; p, pressure; q, heat-flux 
density; r, z, Cartesian or cylindrical coordinates, defined in Fig. i; s, ~, longitudinal 
and transverse coordinates in the molten layer, defined in Fig. i; $2, St~ coordinates of 
the end points of the heating-surface generatri~; t. temperature; u, longitudinal velocity in 
the molten layer; V~ melting rate; W, specific a~i~l load from the direction of th~ heating 
instrument; a, B+ limits of i~tegration in Eq. (R); 7, parameter equal t~ 0 for a plane pattern 

1076 



of the melting process and to i for an axisymmetric pattern; F, generatrix of the surface E; 
4, Laplacian operator; ~, efficiency; ~, characteristic value of the heating-surface curva- 
ture; %, thermal conductivity~ ~, dynamic viscosity; p, density; E, surface; @(M, Mo), inte- 
gral core in Eq. (6). Dimensionless numbers, parameters, and functions ! Br, Kc, Kg, Kh, KW, 
K%, K~, KM, Pe, PeL, Re, defined in Eq. (I); H, P, QH, QM, R, S, U, q, ~, | | Q, defined 
in Eqs. (3) and (4); | | defined in Eq. (5). Indices: L, liquid phase; H, heating- 
element surface; S, solid phase; M, melting surface; *, branch point of flux; ~, value at 
infinitely remote points. 
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